题目内容
【题目】
问题发现
如图
和
均为等边三角形,点
在同一直线上,连接BE.
填空:
的度数为______;
线段
之间的数量关系为______.
拓展探究
如图
和
均为等腰直角三角形,
,点
在同一直线上,CM为
中DE边上的高,连接BE,请判断
的度数及线段
之间的数量关系,并说明理由.
解决问题
如图3,在正方形ABCD中,
,若点P满足
,且
,请直接写出点A到BP的距离.
![]()
【答案】
;
;
,理由见解析;
点A到BP的距离为
或
.
【解析】分析:(1)由条件易证△ACD≌△BCE,从而得到:AD=BE,∠ADC=∠BEC.由点A,D,E在同一直线上可求出∠ADC,从而可以求出∠AEB的度数.
(2)仿照(1)中的解法可求出∠AEB的度数,证出AD=BE;由△DCE为等腰直角三角形及CM为△DCE中DE边上的高可得CM=DM=ME,从而证到AE=2CH+BE.
(3)由PD=1可得:点P在以点D为圆心,1为半径的圆上;由∠BPD=90°可得:点P在以BD为直径的圆上.显然,点P是这两个圆的交点,由于两圆有两个交点,接下来需对两个位置分别进行讨论.然后,添加适当的辅助线,借助于(2)中的结论即可解决问题.
详解:(1)①如图1.∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=∠BCE.
在△ACD和△BCE中,∵
,
∴△ACD≌△BCE(SAS),∴∠ADC=∠BEC.
∵△DCE为等边三角形,∴∠CDE=∠CED=60°.
∵点A,D,E在同一直线上,∴∠ADC=120°,∴∠BEC=120°,∴∠AEB=∠BEC﹣∠CED=60°.
故答案为:60°.
②∵△ACD≌△BCE,∴AD=BE.
故答案为:AD=BE.
(2)∠AEB=90°,AE=BE+2CM.
理由:如图2.∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°,∴∠ACD=∠BCE.
在△ACD和△BCE中,∵
,
∴△ACD≌△BCE(SAS),∴AD=BE,∠ADC=∠BEC.
∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.
∵点A,D,E在同一直线上,∴∠ADC=135°,∴∠BEC=135°,∴∠AEB=∠BEC﹣∠CED=90°.
∵CD=CE,CM⊥DE,
∵∠DCE=90°,∴DM=ME=CM,∴AE=AD+DE=BE+2CM.
(3)点A到BP的距离为
或
.
理由如下:
∵PD=1,∴点P在以点D为圆心,1为半径的圆上.
∵∠BPD=90°,∴点P在以BD为直径的圆上,∴点P是这两圆的交点.
①当点P在如图3①所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交BP于点E,如图3①.
∵四边形ABCD是正方形,∴∠ADB=45°.AB=AD=DC=BC=
,∠BAD=90°,∴BD=2.
∵DP=1,∴BP=
.
∵∠BPD=∠BAD=90°,∴A、P、D、B在以BD为直径的圆上,∴∠APB=∠ADB=45°,∴△PAE是等腰直角三角形.
又∵△BAD是等腰直角三角形,点B、E、P共线,AH⊥BP,∴由(2)中的结论可得:BP=2AH+PD,∴
=2AH+1,∴AH=
.
②当点P在如图3②所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交PB的延长线于点E,如图3②.
同理可得:BP=2AH﹣PD,∴
=2AH﹣1,∴AH=
.
综上所述:点A到BP的距离为
或
.
![]()
【题目】如图①,在正方形ABCD中,
,点E,F分别在BC、CD上,
,试探究
面积的最小值。
下面是小丽的探究过程:
(1)延长EB至G,使
,连接AG,可以证明
.请完成她的证明;
(2)设
,
,![]()
①结合(1)中结论,通过计算得到
与x的部分对应值。请求出表格中a的值:(写出解答过程)
x | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 10 | 8.18 | 6.67 | 5.38 | 4.29 | 3.33 | a | 1.76 | 1.11 | 0.53 | 0 |
②利用上表和(1)中的结论通过描点、连线可以分别画出函数
、
的图像、请在图②中完善她的画图;
③根据以上探究,估计
面积的最小值约为(结果估计到0.1)。
![]()
图① 图②
【题目】温度通常有两种表示方法:华氏度(单位:℉)与摄氏度(单位:℃),已知华氏度数
与摄氏度数
之间是一次函数关系,下表列出了部分华氏度与摄氏度之间的对应关系:
摄氏度数 | … | 0 | … | 35 | … | 100 | … |
华氏度数 | … | 32 | … | 95 | … | 212 | … |
(1)选用表格中给出的数据,求y关于x的函数解析式;
(2)有一种温度计上有两个刻度,即测量某一温度时左边是摄氏度,右边是华氏度,那么在多少摄氏度时,温度计上右边华氏度的刻度正好比左边摄氏度的刻度大56?