题目内容
如果有理数x,y满足|x-1|+(xy-2)2=0.(1)求x,y的值;
(2)试求
| 1 |
| xy |
| 1 |
| (x+1)(y+1) |
| 1 |
| (x+2)(y+2) |
| 1 |
| (x+2009)(y+2009) |
分析:(1)|x-1|≥0,(xy-2)2≥0,而|x-1|+(xy-2)2=0.由此可得出x、y的值.
(2)写出分式,观察规律可得出结果.
(2)写出分式,观察规律可得出结果.
解答:解:(1)∵x-1|≥0,(xy-2)2≥0,又|x-1|+(xy-2)2=0
∴|x-1|=0;(xy-2)2=0
∴x=1,y=2;
(2)原式=
+
+
+
+…+
=
+
-
+
-
+
-
+…+
-
+
-
=
.
∴|x-1|=0;(xy-2)2=0
∴x=1,y=2;
(2)原式=
| 1 |
| 2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 4×5 |
| 1 |
| 2010×2011 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 2009 |
| 1 |
| 2010 |
| 1 |
| 2010 |
| 1 |
| 2011 |
| 2010 |
| 2011 |
点评:本题考查分式的运算,难度较大,尤其(2)要注意观察得出规律后才能运算.
练习册系列答案
相关题目