题目内容

6.如图,已知直线l与⊙O相离.OA⊥l于点A,交⊙O于点P,OA=5,AB与⊙O相切于点B,BP的延长线交直线l于点C.
(1)求证:AB=AC;
(2)若PC=2$\sqrt{5}$,求⊙O的半径及线段PB的长.

分析 (1)连接OB,根据切线的性质和垂直得出∠OBA=∠OAC=90°,推出∠OBP+∠ABP=90°,∠ACP+∠CPA=90°,求出∠ACP=∠ABC,根据等腰三角形的判定推出即可;
(2)延长AP交⊙O于D,连接BD,设圆半径为r,则OP=OB=r,PA=5-r,根据AB=AC推出52-r2=(2$\sqrt{5}$)2-(5-r)2,求出r,证△DPB∽△CPA,得出$\frac{CP}{PD}$=$\frac{AP}{BP}$,代入求出即可.

解答 证明:(1)如图1,连接OB.

∵AB切⊙O于B,OA⊥AC,
∴∠OBA=∠OAC=90°,
∴∠OBP+∠ABP=90°,∠ACP+∠APC=90°,
∵OP=OB,
∴∠OBP=∠OPB,
∵∠OPB=∠APC,
∴∠ACP=∠ABC,
∴AB=AC;
(2)如图2,延长AP交⊙O于D,连接BD,

设圆半径为r,则OP=OB=r,PA=5-r,
则AB2=OA2-OB2=52-r2
AC2=PC2-PA2=(2$\sqrt{5}$)2-(5-r)2
∴52-r2=(2$\sqrt{5}$)2-(5-r)2
解得:r=3,
∴AB=AC=4,
∵PD是直径,
∴∠PBD=90°=∠PAC,
又∵∠DPB=∠CPA,
∴△DPB∽△CPA,
∴$\frac{CP}{PD}$=$\frac{AP}{BP}$,
∴$\frac{2\sqrt{5}}{3+3}$=$\frac{5-3}{BP}$,
解得:PB=$\frac{6\sqrt{5}}{5}$.
∴⊙O的半径为3,线段PB的长为$\frac{6\sqrt{5}}{5}$.

点评 本题考查了等腰三角形的性质和判定,相似三角形的性质和判定,切线的性质,勾股定理,直线与圆的位置关系等知识点的应用,主要培养学生运用性质进行推理和计算的能力.本题综合性比较强,有一定的难度.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网