题目内容

如图,过点P(2,2
2
)作x轴的平行线交y轴于点A,交双曲线y=
k
x
(x>0)
于点N,作PM⊥AN交精英家教网双曲线y=
k
x
(x>0)
于点M,连接AM,若PN=4.
(1)求k的值;
(2)设直线MN解析式为y=ax+b,求不等式
k
x
≥ax+b
的解集.
分析:(1)首先根据点P(2,2
2
)的坐标求出N点的坐标,代入反比例函数解析式即可求出;
(2)利用图形两函数谁在上上面谁大,交点坐标即是函数大小的分界点,可以直接判断出函数的大小关系.
解答:精英家教网解:(1)依题意,则AN=4+2=6,
∴N(6,
2
),
把N(6,
2
)代入y=
k
x
得:
xy=6
2

∴k=6
2


(2)∵M点横坐标为2,精英家教网
∴M点纵坐标为
6
2
2
=3
2

∴M(2,3
2
),
∴由图象知,
k
x
≥ax+b的解集为:
0<x≤2或x≥6.
点评:此题主要考查了反比例函数的性质以及待定系数法求解析式和利用图形判断函数的大小关系,数形结合解决比较函数的大小关系是初中阶段的难点问题,同学们重点学习.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网