题目内容
若代数式有意义,则实数x的取值范围是( )
A. B. C. D.且
“黑洞”是恒星演化的最后阶段.根据有关理论,当一颗恒星衰老时,其中心的燃料(氢)已经被耗尽,在外壳的重压之下,核心开始坍缩,直到最后形成体积小、密度大的星体.如果这一星体的质量超过太阳质量的三倍,那么就会引发另一次大坍缩.当这种收缩使得它的半径达到施瓦氏(Schwarzschild)半径后,其引力就会变得相当强大,以至于光也不能逃脱出来,从而成为一个看不见的星体——黑洞.施瓦氏半径(单位:米)的计算公式是,其中 牛·米2/千克2,为万有引力常数;M表示星球的质量(单位:千克);米/秒,为光在真空中的速度.已知太阳的质量为千克,则可计算出太阳的施瓦氏半径为
A.米 B.米
C.米 D.米
用一条长为40cm的绳子围成一个面积为acm2的长方形,a的值不可能为
A.20 B. 40 C.100 D.120
如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A,C分别在x,y轴的正半轴上.点Q在对角线OB上,且OQ=OC,连接CQ并延长CQ交边AB于点P,则点P的坐标为( , ).
下列各因式分解正确的是( )
A.x2+2x-1=(x-1)2
B.-x2 +(-2)2 =(x-2)(x+2)
C.x3-4x = x(x+2)(x-2)
D.(x+1)2 = x2+2x+1
如图,在平面直角坐标系中,顶点为(4,-1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3)
(1)求此抛物线的解析式;
(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;
(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.
已知关于x的分式方程-=1的解为负数,则k的取值范围是 .
(12分)如图,已知△ABC内接于⊙O,点D在OC的延长线上,∠ABC=∠CAD.
(1)若∠ABC=20°,则∠OCA的度数为 ;
(2)判断直线AD与⊙O的位置关系,并说明理由;
(3)若OD⊥AB,BC=5,AB=8,求⊙O的半径.
如图,电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A、B、C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是( )
A. B. C. D.