题目内容

15.如图,已知AB是⊙的直径,AC是弦,点P是BA延长线上一点,连接PC,BC.∠PCA=∠B
(1)求证:PC是⊙O的切线;
(2)若PC=6,PA=4,求直径AB的长.

分析 (1)连接OC,由圆周角定理得出∠ACB=90°,得出∠1+∠2=90°,由等腰三角形的性质得出∠PCA=∠2,因此∠1+∠PCA=90°,即PC⊥OC,即可得出结论;
(2)由切割线定理得出PC2=PA•PB,求出PB,即可得出直径AB的长.

解答 (1)证明:连接OC,如图所示:
∵AB是⊙的直径,
∴∠ACB=90°,
即∠1+∠2=90°,
∵OB=OC,
∴∠2=∠B,
又∵∠PCA=∠B,
∴∠PCA=∠2,
∴∠1+∠PCA=90°,
即PC⊥OC,
∴PC是⊙O的切线;
(2)解:∵PC是⊙O的切线,
∴PC2=PA•PB,
∴62=4×PB,
解得:PB=9,
∴AB=PB-PA=9-4=5.

点评 本题考查了切线的判定与性质、等腰三角形的性质、圆周角定理、切割线定理;熟练掌握切线的判定方法,由切割线定理求出PB是解决问题(2)的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网