题目内容
| A、∠AMC>∠BNE | B、∠AMC=∠BNE | C、∠AMC<∠BNE | D、随着E点的运动以上三种关系都有可能 |
分析:两角应该相等;首先看∠AMC,此角是△CMH的外角(设AE与BC的交点是H),则∠MCB+∠CHM=∠AMC,由于OB、OC都是半径,则有:∠MCB=∠B,即∠AMC=∠B+∠CHM;同理可知∠BNE=∠E+∠NHE;观察上述两式,∠CHM和∠EHN是对顶角,两角相等;而由垂径定理易证得∠B和∠E所对的弧相等,由此可证得∠B=∠E,即∠AMC=∠BNE.
解答:解:如图;∵AB是直径,且AB⊥CD,
∴
=
;
∴∠B=∠E;
又∵OB=OC,
∴∠OCB=∠B,即∠OCB=∠E;
∵∠AMC=∠OCB+∠MHC,∠BNE=∠NHE+∠E,
且∠MHC=∠NHE,∠OCB=∠E;
∴∠AMC=∠BNE.
故选B.
∴
| AC |
| AD |
∴∠B=∠E;
又∵OB=OC,
∴∠OCB=∠B,即∠OCB=∠E;
∵∠AMC=∠OCB+∠MHC,∠BNE=∠NHE+∠E,
且∠MHC=∠NHE,∠OCB=∠E;
∴∠AMC=∠BNE.
故选B.
点评:此题主要考查的是垂径定理、圆周角定理以及三角形外角的性质.
练习册系列答案
相关题目