题目内容

15.x1,x2是方程2x2-5x-1=0的两根,求下列代数式的值:
(1)x12+x22-3x2x2
(2)$\frac{{x}_{2}}{{x}_{1}}$+$\frac{{x}_{1}}{{x}_{2}}$;
(3)|x1-x2|

分析 先根据根与系数的关系得到x1+x2=$\frac{5}{2}$,x1x2=-$\frac{1}{2}$,再利用完全平方公式变形得到x12+x22-3x2x2=(x1+x22-5x1x2;$\frac{{x}_{2}}{{x}_{1}}$+$\frac{{x}_{1}}{{x}_{2}}$=$\frac{{{x}_{1}}^{2}+{{x}_{2}}^{2}}{{x}_{1}{x}_{2}}$=$\frac{({x}_{1}+{x}_{2})^{2}-2{x}_{1}{x}_{2}}{{x}_{1}{x}_{2}}$;|x1-x2|=$\sqrt{({x}_{1}-{x}_{2})^{2}}$=$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$,然后分别利用整体代入的方法计算.

解答 解:根据题意得x1+x2=$\frac{5}{2}$,x1x2=-$\frac{1}{2}$,
(1)x12+x22-3x2x2=(x1+x22-5x1x2=($\frac{5}{2}$)2-5×(-$\frac{1}{2}$)=$\frac{35}{4}$;
(2)$\frac{{x}_{2}}{{x}_{1}}$+$\frac{{x}_{1}}{{x}_{2}}$=$\frac{{{x}_{1}}^{2}+{{x}_{2}}^{2}}{{x}_{1}{x}_{2}}$=$\frac{({x}_{1}+{x}_{2})^{2}-2{x}_{1}{x}_{2}}{{x}_{1}{x}_{2}}$=$\frac{(\frac{5}{2})^{2}-2×(-\frac{1}{2})}{-\frac{1}{2}}$=-$\frac{29}{2}$;
(3)|x1-x2|=$\sqrt{({x}_{1}-{x}_{2})^{2}}$=$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{(\frac{5}{2})^{2}-4×(-\frac{1}{2})}$=$\frac{\sqrt{33}}{2}$.

点评 本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-$\frac{b}{a}$,x1x2=$\frac{c}{a}$.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网