题目内容

当a,b为何值时,代数式a2+b2+2a-4b+6的值最小?最小值是多少?
考点:配方法的应用,非负数的性质:偶次方
专题:
分析:把代数式a2+b2+2a-4b+6变形为2个完全平方和的形式后即可判断.
解答:解:∵a2+b2+2a-4b+6
=a2+2a+1+b2-4b+4+1
=(a+1)2+(b-2)2+1,
∴当a=-1,b=2时,代数式有最小值,为1.
点评:本题考查了完全平方的形式及非负数的性质,难度一般,关键是正确变形为完全平方的形式后进行判断.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网