题目内容
如图,菱形ABCD中,E、F分别是BC、CD上的点,且∠B=∠EAF=60°,∠BAE=18°,则∠CEF=________.
18°
分析:首先证明△ABE≌△ACF,然后推出AE=AF,证明△AEF是等边三角形,最后可求出∠CEF的度数.
解答:连接AC,
∵四边形ABCD是菱形,
∴AB=BC=CD=AD,
∵∠B=∠EAF=60°,
∴△ABC是等边三角形,∠BCD=120°,
∴AB=AC,∠B=∠ACF=60°,
∵∠BAE+∠EAC=∠FAC+∠EAC,
∴∠BAE=∠FAC,
在△ABE与△ACF中,
∴
∴△ABE≌△ACF,(ASA)
∴AE=AF,
又∵∠EAF=∠D=60°,
∴△AEF是等边三角形,
∴∠AEF=60°,
又∠AEC=∠B+∠BAE=78°,
则∠CEF=78°-60°=18°.
故答案为:18°.
点评:此题主要考查菱形的性质和等边三角形的判定以及三角形的内角和定理,有一定的难度,解答本题的关键是正确作出辅助线,然后熟练掌握菱形的性质.
分析:首先证明△ABE≌△ACF,然后推出AE=AF,证明△AEF是等边三角形,最后可求出∠CEF的度数.
解答:连接AC,
∵四边形ABCD是菱形,
∴AB=BC=CD=AD,
∵∠B=∠EAF=60°,
∴△ABC是等边三角形,∠BCD=120°,
∴AB=AC,∠B=∠ACF=60°,
∵∠BAE+∠EAC=∠FAC+∠EAC,
∴∠BAE=∠FAC,
在△ABE与△ACF中,
∴
∴△ABE≌△ACF,(ASA)
∴AE=AF,
又∵∠EAF=∠D=60°,
∴△AEF是等边三角形,
∴∠AEF=60°,
又∠AEC=∠B+∠BAE=78°,
则∠CEF=78°-60°=18°.
故答案为:18°.
点评:此题主要考查菱形的性质和等边三角形的判定以及三角形的内角和定理,有一定的难度,解答本题的关键是正确作出辅助线,然后熟练掌握菱形的性质.
练习册系列答案
相关题目