题目内容
如图,在RT△ABC中,∠CAB=30°,∠C =90°。AD=AC,AB=8, E是AB上任意一点,F是AC上任意一点,则折线DEFB的最短长度为 。
;
无论a取什么实数,点P(a﹣1,2a﹣3)都在直线l上.Q(m,n)是直线l上的点,则(2m﹣n+3)2的值等于 .
一项“过关游戏”规定:在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,若n次抛掷所出现的点数之和大于,则算过关;否则不算过关.则能过第二关的概率是( )
A. B. C. D.
如图,直线,则∠为( )
A. 40° B. 50°C. 60° D. 70°
彼此相似的矩形,,,…,按如图所示的方式放置.点,,,…,和点,,,…,分别在直线(k>0)和x轴上,已知点、的坐标分别为(1,2),(3,4),则Bn的坐标是( )
A. B. C. D.
定义:已知反比例函数与,如果存在函数()则称函数为这两个函数的中和函数.
(1)试写出一对函数,使得它的中和函数为,并且其中一个函数满足:当时, 随的增大而增大.
(2) 函数和的中和函数和函数,试求当与二次函数都是y随着x的增大而减小,求k应满足的条件以及x 的取值范围。
若将函数y=3x2的图象向右平行移动1个单位,再向上平移5个单位,可得到的抛物线是
A.y=3(x+1)2-5 B.y=3(x+1)2+5 C.y=3(x-1)2-5 D.y=3(x-1)2+5
钓鱼岛历来是中国领土,以它为圆心在周围12海里范围内均属于禁区,不允许它国船只进入,如图,今有一中国海监船在位于钓鱼岛A正南方距岛60海里的B处海域巡逻,值班人员发现在钓鱼岛的正西方向52海里的C处有一艘日本渔船,正以9节的速度沿正东方向驶向钓鱼岛,中方立即向日本渔船发出警告,并沿北偏西30°的方向以12节的速度前往拦截,期间多次发出警告,2小时候海监船到达D处,与此同时日本渔船到达E处,此时海监船再次发出严重警告.
(1)当日本渔船受到严重警告信号后,必须沿北偏东转向多少度航行,才能恰好避免进入钓鱼岛12海里禁区?
(2)当日本渔船不听严重警告信号,仍按原速度,原方向继续前进,那么海监船必须尽快到达距岛12海里,且位于线段AC上的F处强制拦截渔船,问海监船能否比日本渔船先到达F处?(注:①中国海监船的最大航速为18节,1节=1海里/小时;②参考数据:sin26.3°≈0.44,sin20.5°≈0.35,sin18.1°≈0.31,≈1.4,≈1.7)
线段OA=2(O为坐标原点),点A在轴的正半轴上。现将线段OA绕点O逆时针旋转度,且。
①当等于 时,点A落在图像上;
②在旋转过程中若点A 能落在图像上,则的取值范围是 .