题目内容
因式分解
(1)
(2)
如图,正方形ABCD中,把△ADE绕顶点A顺时针旋转90°后到△ABF的位置,则△ADE≌ ,AF与AE的关系是 .
操作:如图①,△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角:
(1)角的两边分别交AB、AC边于M、N两点,连接MN.探究:线段BM、MN、NC之间的关系,并加以证明.
(2)若角的两边分别交AB、CA的延长线于M、N两点,连接MN。在图②中画出图形,再直接写出线段BM、MN、NC之间的关系.
已知关于的方程的一个根为,则实数的值为( )
A.1 B. C.2 D.=
(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.试猜想BD,CE,DE三者的数量关系?(直接写出结果)
(2) 如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC= ,其中 为任意锐角或钝角.请问(1)中的结论是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3) 拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状,并说明理由.
如图,∠AOP=∠BOP=15°,PC∥OA,PQ⊥OA,若PC=4,则PQ=___ __.
如果是一个完全平方式,那么k的值是( )
A、30 B、±30 C、15 D、±15
已知,如图所示,在△中,为上一点,在下列四个条件中:①;
②;③·;④··.其中,能满足△和△相似的条件是 .(填序号)
如图①所示,直线:与轴负半轴、轴正半轴分别交于、 两点.(1)当时,试确定直线的解析式;
(2)在(1)的条件下,如图②所示,设为延长线上一点,连接,过、两点分别作于,于,若,求M点的坐标;
(3)当取不同的值时,点在轴正半轴上运动,分别以、为边在第一、第二象限作等腰直角和等腰直角,连交轴于点,问当点在轴上运动时,试猜想△ABP的面积是否改变,若不变,请求出其值;若改变,请说明理由.
(4)当取不同的值时,点在轴正半轴上运动,以为边在第二象限作等腰直角,则动点E在直线_______________________________上运动.(直接写出直线的表达式)