题目内容


(1)如图,在矩形ABCD中,BF=CE,求证:AE=DF;

(2)如图,在圆内接四边形ABCD中,O为圆心,∠BOD=160°,求∠BCD的度数.

 


(1)证明:∵四边形ABCD是矩形,

∴AB=CD,∠B=∠C=90°,

∵BF=CE,

∴BE=CF,

在△ABE和△DCF中

 

∴△ABE≌△DCF,

∴AE=DF;

(2)解:∵∠BOD=160°,

∴∠BAD= ∠BOD=80°,

∵A、B、C、D四点共圆,

∴∠BCD+∠BAD=180°,

∴∠BCD=100°.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网