题目内容

当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为

 

或2

【解析】

试题分析:二次函数y=-(x-m)²+m²+1的顶点为(m,m²+1),

(1)当m<-2时,顶点(对称轴 x=m)在-2≤x≤1范围左侧,此时函数在-2≤x≤1范围内y随着x的增大而减小,所以当x=-2时,y最大,所以4=-(-2-m)²+m²+1,解得m=-7/4,因m<-2,所以m=-7/4舍去;

(2)当-2≤m≤1时,顶点(对称轴 x=m)在-2≤x≤1范围内,所以当x=m时,y有最大值,所以4=m²+1解得:m=±√3,因-2≤m≤1,所以m=√3舍去,所以m=-√3;

(3)当m>1时,顶点(对称轴 x=m)在-2≤x≤1范围右侧,此时函数在-2≤x≤1范围内y随着x的增大而增大,所以当x=1时,y最大,所以4=-(1-m)²+m²+1,解得m=2,

综上得当m=-√3或m=2时,二次函数y=-(x-m)²+m²+1在-2≤x≤1范围内有最大值时4.

考点:1.二次函数的性质;2.二次函数的最值.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网