搜索
题目内容
4、分解因式:a
2
-12a+20=
(a-10)(a-2)
.
试题答案
相关练习册答案
分析:
因为(-2)×(-10)=20,(-2)+(-10)=-12,所以利用十字相乘法分解因式即可.
解答:
解:a
2
-12a+20=(a-10)(a-2).
点评:
本题考查十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是多项式乘法的逆过程.
练习册系列答案
专题王系列答案
学考联通寒假作业冲刺中考长江出版社系列答案
必胜课课课达标系列答案
非常考生课时高效作业本 系列答案
期末100分闯关海淀考王系列答案
实验班提优辅导教程系列答案
小学能力测试卷系列答案
一通百通同步训练系列答案
必胜课小学同步训练系列答案
语文周报高效提升金刊系列答案
相关题目
(1)分解因式:a
2
-1+b
2
-2ab
(2)先化简,再求值:(a
2
b-2ab
2
-b
3
)÷b-(a+b)(a-b),其中
a=
1
2
,b=-1
.
31、问题1:同学们已经体会到灵活运用乘法公式给整式乘法及多项式的因式分解带来的方便,快捷.相信通过下面材料的学习、探究,会使你大开眼界,并获得成功的喜悦.
例:用简便方法计算195×205.
解:195×205
=(200-5)(200+5)①
=200
2
-5
2
②
=39975
(1)例题求解过程中,第②步变形是利用
平方差公式
(填乘法公式的名称);
(2)用简便方法计算:9×11×101×10001.
问题2:对于形如x
2
+2ax+a
2
这样的二次三项式,可以用公式法将它分解成(x+a)
2
的形式.但对于二次三项式x
2
+2ax-3a
2
,就不能直接运用公式了.此时,我们可以在二次三项式x
2
+2ax-3a
2
中先加上一项a
2
,使它与x
2
+2ax的和成为一个完全平方式,再减去a
2
,整个式子的值不变,于是有:
x
2
+2ax-3a
2
=(x
2
+2ax+a
2
)-a
2
-3a
2
=(x+a)
2
-(2a)
2
=(x+3a)(x-a).
像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.
(1)利用“配方法”分解因式:a
2
-4a-12.
问题3:若x-y=5,xy=3,求:①x
2
+y
2
;②x
4
+y
4
的值.
分解因式:
a
2
-a-
b
2
+
1
4
=
(a-b-
1
2
)(a+b-
1
2
)
(a-b-
1
2
)(a+b-
1
2
)
.
(1)解不等式:
2-x
3
>4-
x
2
(2)解不等式组
3x-5<2x
x-1
2
≥2x+1
,并将其解集在数轴上表示出来.
(3)解方程
2
x+3
+
3
2
=
7
2x+6
(4)分解因式(a
2
+b
2
)
2
-4a
2
b
2
(5)先化简,再求值:
(1-
1
x+2
) ÷
x
2
+2x+1
x
2
-4
,其中x=-3.
问题1:同学们已经体会到灵活运用乘法公式给整式乘法及多项式的因式分解带来的方便,快捷.相信通过下面材料的学习、探究,会使你大开眼界,并获得成功的喜悦.
例:用简便方法计算195×205.
解:195×205
=(200-5)(200+5)①
=200
2
-5
2
②
=39975
(1)例题求解过程中,第②步变形是利用______(填乘法公式的名称);
(2)用简便方法计算:9×11×101×10001.
问题2:对于形如x
2
+2ax+a
2
这样的二次三项式,可以用公式法将它分解成(x+a)
2
的形式.但对于二次三项式x
2
+2ax-3a
2
,就不能直接运用公式了.此时,我们可以在二次三项式x
2
+2ax-3a
2
中先加上一项a
2
,使它与x
2
+2ax的和成为一个完全平方式,再减去a
2
,整个式子的值不变,于是有:
x
2
+2ax-3a
2
=(x
2
+2ax+a
2
)-a
2
-3a
2
=(x+a)
2
-(2a)
2
=(x+3a)(x-a).
像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.
(1)利用“配方法”分解因式:a
2
-4a-12.
问题3:若x-y=5,xy=3,求:①x
2
+y
2
;②x
4
+y
4
的值.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案