题目内容

如图,已知在△ABC中,∠ACB=90°,BC=2,AC=4,点D在射线BC上,以点D为圆心,BD为半径画弧交边AB于点E,过点E作EF⊥AB交边AC于点F,射线ED交射线AC于点G.

(1)求证:△EFG∽△AEG;

(2)设FG=x,△EFG的面积为y,求y关于x的函数解析式并写出定义域;

(3)联结DF,当△EFD是等腰三角形时,请直接写出FG的长度.

(1)详见解析;(2);(3)当△EFD为等腰三角形时,FG的长度是: . 【解析】试题分析:(1)由等边对等角得∠B=∠BED,由同角的余角相等可得∠A=∠GEF,进而由两角分别相等的两个三角形相似,可证△EFG∽△AEG; (2)作EH⊥AF于点H,由tanA=及△EFG∽△AEG,得AG=4x,AF=3x,EH= , 可得y关于x的解析式; (3)△EFD是等腰三角形...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网