题目内容
观察下列等式
=1-
,
=
-
,
=
-
,
将以上三个等式两边分别相加得:
+
+
=1-
+
-
+
-
=1-
=
.
(1)猜想并写出:
=
(2)直接写出下列各式的计算结果:
①
+
+
+…+
=
②
+
+
+…+
=
(3)探究并计算:
+
+
+…+
.
| 1 |
| 1×2 |
| 1 |
| 2 |
| 1 |
| 2×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3×4 |
| 1 |
| 3 |
| 1 |
| 4 |
将以上三个等式两边分别相加得:
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 3 |
| 4 |
(1)猜想并写出:
| 1 |
| n(n+1) |
(2)直接写出下列各式的计算结果:
①
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 2012×2013 |
②
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| n×(n+1) |
(3)探究并计算:
| 1 |
| 2×4 |
| 1 |
| 4×6 |
| 1 |
| 6×8 |
| 1 |
| 2010×2012 |
考点:有理数的混合运算
专题:规律型
分析:(1)将
拆分即可求解;
(2)①②先拆分再抵消即可求解;
(3)先提取
,再拆分抵消即可求解.
| 1 |
| n(n+1) |
(2)①②先拆分再抵消即可求解;
(3)先提取
| 1 |
| 4 |
解答:解:(1)
-
;
(2)①
+
+
+…+
=1-
+
-
+…+
-
=1-
=
;
②
+
+
+…+
=1-
+
-
+…+
-
=1-
=
;
(3)
+
+
+…+
=
(
+
+
+…+
)
=
(1-
+
-
+
-
+…+
-
)
=
×(1-
)=
.
故答案为:
-
;
;
.
| 1 |
| n |
| 1 |
| n+1 |
(2)①
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 2012×2013 |
=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2012 |
| 1 |
| 2013 |
=1-
| 1 |
| 2013 |
=
| 2012 |
| 2013 |
②
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| n×(n+1) |
=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=1-
| 1 |
| n+1 |
=
| n |
| n+1 |
(3)
| 1 |
| 2×4 |
| 1 |
| 4×6 |
| 1 |
| 6×8 |
| 1 |
| 2010×2012 |
=
| 1 |
| 4 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 1005×1006 |
=
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 1005 |
| 1 |
| 1006 |
=
| 1 |
| 4 |
| 1 |
| 1006 |
| 1005 |
| 4024 |
故答案为:
| 1 |
| n |
| 1 |
| n+1 |
| 2012 |
| 2013 |
| n |
| n+1 |
点评:考查了有理数的混合运算,拆分抵消思想是解题的关键.
练习册系列答案
相关题目
下列事件中,属于旋转运动的是( )
| A、小明向北走了4米 |
| B、小朋友们在荡秋千时做的运动 |
| C、电梯从1楼到12楼 |
| D、一物体从高空坠下 |
函数y=2x-5的图象一定过( )
| A、(-2,1) |
| B、(2,-1) |
| C、(-1,2) |
| D、(1,-2) |
多项式52x2-2x+1的次数是( )
| A、4 | B、3 | C、2 | D、1 |