题目内容

9.如图,在△ABC中,AB≠AC.D、E分别为边AB、AC上的点.AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件:DF∥AC,或∠BFD=∠A,可以使得△FDB与△ADE相似.(只需写出一个)

分析 结论:DF∥AC,或∠BFD=∠A.根据相似三角形的判定方法一一证明即可.

解答 解:DF∥AC,或∠BFD=∠A.
理由:∵∠A=∠A,$\frac{AD}{AC}$=$\frac{AE}{AB}$=$\frac{1}{3}$,
∴△ADE∽△ACB,
∴①当DF∥AC时,△BDF∽△BAC,
∴△BDF∽△EAD.
②当∠BFD=∠A时,∵∠B=∠AED,
∴△FBD∽△AED.
故答案为DF∥AC,或∠BFD=∠A.

点评 本题考查相似三角形的判定和性质.平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网