题目内容
考点:平行线的判定与性质,垂线
专题:常规题型
分析:由于DE⊥AO于E,BO⊥AO于O,根据在同一平面内,垂直于同一条直线的两直线平行得到DE∥BO,根据平行线的性质得∠2=∠3,再利用等量代换得∠1=∠3,根据平行线的判定得CF∥OD,然后利用FC⊥AB得到OD⊥AB.
解答:解:DO⊥AB.理由如下:
∵DE⊥AO于E,BO⊥AO于O,
∴DE∥BO,
∴∠2=∠3,
∵∠1=∠2,
∴∠1=∠3,
∴CF∥OD,
∵FC⊥AB,
∴OD⊥AB.
∵DE⊥AO于E,BO⊥AO于O,
∴DE∥BO,
∴∠2=∠3,
∵∠1=∠2,
∴∠1=∠3,
∴CF∥OD,
∵FC⊥AB,
∴OD⊥AB.
点评:本题考查了平行线的判定与性质:在同一平面内,垂直于同一条直线的两直线平行;同位角相等,两直线平行;两直线平行,内错角相等;若一条直线垂直于两平行线的一条直线,那么它也与另一条直线平行.
练习册系列答案
相关题目