题目内容

12、如图,在等边△ABC中,AC=3,点O在AC上,且AO=1.点P是AB上一点,连接OP,以线段OP为一边作正△OPD,且O、P、D三点依次呈逆时针方向,当点D恰好落在边BC上时,则AP的长是
2
分析:如图,通过观察,寻找未知与已知之间的联系.AO=1,则OC=2.证明△AOP≌△COD求解.
解答:解:∵∠C=∠A=∠DOP=60°,OD=OP,
∴∠CDO+∠COD=120°,∠COD+∠AOP=120°,
∴∠CDO=∠AOP.
∴△ODC≌△POA.
∴AP=OC.
∴AP=OC=AC-AO=2.
故答案为2.
点评:解决本题的关键是利用全等把所求的线段转移到已知的线段上.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网