题目内容
八年级的学生去距学校10千米的科技馆参观,一部分学生骑自行车先走,过了20分钟,其余的学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑自行车学生速度的2倍,求骑车学生每小时走多少千米?
已知:x2-4x+4与|y-1|互为相反数,则式子的值等于 .
在图1、图2、图3中,直线MN与线段AB的延长线或AB交于点O,点C和点D在直线MN上,且∠ACM =∠BDM = 45°.
(1)在图1中,点O在AB的延长线上,且AO=3BO,请直接写出AC与BD的数量关系与位置关系;
(2)在图2中,点O在AB上,且AO=BO,写出AC与BD的数量关系与位置关系并证明.
(3)在图3中,点O在AB上,且AO=kBO,求的值.
已知点P(a-1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为(阴影部分)( )
对某一个函数给出如下定义:如果存在实数,对于任意的函数值,都满足,那么称这个函数是有上界函数,在所有满足条件的中,其最小值称为这个函数的上确界.例如下图中的函数是有上界函数,其上确界是2.
(1)分别判断函数()和()是不是有上界函数?如果是有上界函数,求其上确界;
(2)如果函数()的上确界是,且这个函数的最小值不超过,求的取值范围;
(3)若函数()是以3为上确界的有上界函数,求值.
如图所示方格纸中每个小正方形的边长为1,其中有三个格点A、B、C,则sin∠ABC= .
如果实数x、y满足方程组 那么 .
“校园手机”现象越来越受到社会关注.“寒假”期间,记者小刘随机调查了某区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:
(1)求这次调查的家长人数,并补全图①;
(2)求图②中表示家长“赞成”的圆心角的度数;
(3)若该区共有中学生8000人,请根据以上图表信息估算出该区中学生中对“校园手机”持“无所谓”态度的人数是多少?
如图,直线MN与⊙O相切于点M,ME=EF且EF∥MN,则∠E的大小等于( )
A.75° B.60° C.45° D.30°