题目内容
如图,关于∠α与∠β的同一种三角函数值,有三个结论:①tanα>tanβ,②sinα>sinβ,③cosα>cosβ.正确的结论为
- A.①②
- B.②③
- C.①③
- D.①②③
A
分析:首先根据图形可得:∠α>∠β,然后根据各锐角函数的增减性,即可求得答案.
解答:根据图形得:∠α>∠β,
∴tanα>tanβ,sinα>sinβ,cosα<cosβ.
∴①②正确.
故选A.
点评:此题考查了锐角函数的增减性与三角形外角的性质.注意当角度在0°~90°间变化时,
①正弦值随着角度的增大(或减小)而增大(或减小);
②余弦值随着角度的增大(或减小)而减小(或增大);
③正切值随着角度的增大(或减小)而增大(或减小).
分析:首先根据图形可得:∠α>∠β,然后根据各锐角函数的增减性,即可求得答案.
解答:根据图形得:∠α>∠β,
∴tanα>tanβ,sinα>sinβ,cosα<cosβ.
∴①②正确.
故选A.
点评:此题考查了锐角函数的增减性与三角形外角的性质.注意当角度在0°~90°间变化时,
①正弦值随着角度的增大(或减小)而增大(或减小);
②余弦值随着角度的增大(或减小)而减小(或增大);
③正切值随着角度的增大(或减小)而增大(或减小).
练习册系列答案
相关题目
设边长为2a的正方形的中心A在直线l上,它的一组对边垂直于直线l,半径为r的⊙O的圆心O在直线l上运动,点A、O间距离为d.
(1)如图①,当r<a时,根据d与a、r之间关系,将⊙O与正方形的公共点个数填入下表:
所以,当r<a时,⊙O与正方形的公共点的个数可能有 个;
(2)如图②,当r=a时,根据d与a、r之间关系,将⊙O与正方形的公共点个数填入下表:
所以,当r=a时,⊙O与正方形的公共点个数可能有 个;
(3)如图③,当⊙O与正方形有5个公共点时,试说明r=
a;
(4)就r>a的情形,请你仿照“当…时,⊙O与正方形的公共点个数可能有 个”的形式,至少给出一个关于“⊙O与正方形的公共点个数”的正确结论.
(注:第(4)小题若多给出一个正确结论,则可多得2分,但本大题得分总和不得超过12分).
(1)如图①,当r<a时,根据d与a、r之间关系,将⊙O与正方形的公共点个数填入下表:
| d、a、r之间关系 | 公共点的个数 |
| d>a+r | |
d=a+r |
|
| a≤d<a+r | |
| d=a-r | |
| d<a-r |
(2)如图②,当r=a时,根据d与a、r之间关系,将⊙O与正方形的公共点个数填入下表:
| d、a、r之间关系 | 公共点的个数 |
| d>a+r | |
| d=a+r | |
| a≤d<a+r | |
| d<a |
(3)如图③,当⊙O与正方形有5个公共点时,试说明r=
| 5 |
| 4 |
(4)就r>a的情形,请你仿照“当…时,⊙O与正方形的公共点个数可能有
(注:第(4)小题若多给出一个正确结论,则可多得2分,但本大题得分总和不得超过12分).