题目内容
6.如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.(1)证明:DE=BD+CE.
(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=120°.请问结论DE=BD+CE是否还成立?如果成立,请你给出证明;若不成立,请说明理由.
(3)如图(3),D、E是直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.
分析 (1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA,则AE=BD,AD=CE,于是DE=AE+AD=BD+CE;
(2)利用∠BDA=∠BAC=120,则∠DBA+∠BAD=∠BAD+∠CAE=60°,得出∠CAE=∠ABD,进而得出△ADB≌△CEA即可得出答案;
(3)由△ABF和△ACF均为等边三角形,得到BAC=∠BAF+∠CAF=120°,利用∠BDA=∠BAC=120,则∠DBA+∠BAD=∠BAD+∠CAE=60°,得出∠CAE=∠ABD,进而得出△ADB≌△CEA,根据全等三角形的性质得到AE=BD,∠ABD=∠CAE,得到∠DBF=∠FAE,根据全等三角形的性质得到DF=EF,∠BFD=∠AFE,根据得到结论.
解答 证明:(1)∵BD⊥直线m,CE⊥直线m,
∴∠BDA=∠CEA=90°,
∵∠BAC=90°,
∴∠BAD+∠CAE=90°,
∵∠BAD+∠ABD=90°,
∴∠CAE=∠ABD,
在△ADB和△CEA中,
$\left\{\begin{array}{l}{∠ABD=∠CAE}\\{∠BDA=∠CEA}\\{AB=AC}\end{array}\right.$,
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE;
(2)∵∠BDA=∠BAC=120°,
∴∠DBA+∠BAD=∠BAD+∠CAE=60°,
∴∠CAE=∠ABD,
在△ADB和△CEA中,
$\left\{\begin{array}{l}{∠ABD=∠CAE}\\{∠BDA=∠CEA}\\{AB=AC}\end{array}\right.$,
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE;
(3)∵△ABF和△ACF均为等边三角形,
∴BAC=∠BAF+∠CAF=120°,
∴∠BDA=∠BAC=120°,
∴∠DBA+∠BAD=∠BAD+∠CAE=60°,
∴∠CAE=∠ABD,
在△ADB和△CEA中,
$\left\{\begin{array}{l}{∠ABD=∠CAE}\\{∠BDA=∠CEA}\\{AB=AC}\end{array}\right.$,
∴△ADB≌△CEA(AAS),
∴AE=BD,∠ABD=∠CAE,
∵∠DBF=60°+∠ABD,∠FAE=60°+∠CAE,
∴∠DBF=∠FAE,
在△BDF与△AEF中,$\left\{\begin{array}{l}{BD=AE}\\{∠DBF=∠EAF}\\{BF=AF}\end{array}\right.$,
∴△BDF≌△AEF,
∴DF=EF,∠BFD=∠AFE,
∵∠BFD+∠AFD=60°,
∴∠EFA+∠AFD=60°,
即∠DFE=60°,
∴△DEF是等边三角形.
点评 本题主要考查全等三角形的判定和性质,等边三角形的性质,由条件证明三角形全等得到BD=AE、CE=AD是解题的关键.
| A. | $\frac{4}{5}$(m-n)元 | B. | ($\frac{4}{5}m-n$)元 | C. | $\frac{1}{5}$(m-n)元 | D. | ($\frac{1}{5}$m-n)元 |