题目内容
在下列调查中,适宜采用全面调查的是( )
A.了解我省中学生视力情况
B.了解九(1)班学生校服的尺码情况
C.检测一批电灯泡的使用寿命
D.调查台州《600全民新闻》栏目的收视率
(本题12分)如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A沿边AB向点B以1cm/s的速度移动;同时,点Q从点B沿边BC向点C以2cm/s的速度移动,设运动的时间为t s(0<t<6),试尝试探究下列问题:
(1)当t为何值时,△PBQ的面积等于8cm?
(2)当t为何值时,△PBQ的面积最大,并求出这个最大面积;
(3)当t为何值时,△PDQ是等腰三角形?写出探索过程.
如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长( )
A. B. C. D.
关于x的方程,有以下三个结论:①当m=0时,方程只有一个实数解②当时,方程有两个不等的实数解③无论m取何值,方程都有一个负数解,其中正确的是 (填序号)
如果将长为6cm,宽为5cm的长方形纸片折叠一次,那么这条折痕的长不可能是( )
A.8cm B.cm C.5.5cm D.1cm
(本题10分)甲乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲乙两人相距(米),甲行走的时间为(分),关于的函数函数图像的一部分如图所示.
(1)求甲行走的速度;
(2)在坐标系中,补画关于函数图象的其余部分;
(3)问甲乙两人何时相距360米?
如图,四边形ABCD与四边形AECF都是菱形,点E,F在BD上,已知∠BAD=120°,∠EAF=30°,则=
(本题共8分)已知关于的方程.
(1)求证:方程总有两个实数根;
(2)若方程的两个实数根都是整数,求正整数的值.
如图在△ABC中,D、E分别是AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为( )
A.15° B.20° C.25° D.30°