题目内容
如图,三角形的顶点落在折叠后的四边形内部,则∠γ与∠α+∠β之间的关系是( )
A. ∠γ=∠α+∠β B. 2∠γ=∠α+∠β
C. 3∠γ=2∠α+∠β D. 3∠γ=2(α∠+∠β)
阅读下面材料:
在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:
尺规作图:过圆外一点作圆的切线.
已知:P为⊙O外一点.
求作:经过点P的⊙O的切线.
小敏的作法如下:如图,
(1)连接OP,作线段OP的垂直平分线MN交OP于点C.
(2)以点C为圆心,CO的长为半径作圆,交⊙O于A,B两点.
(3)作直线PA,PB.
老师认为小敏的作法正确.
请回答:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是 ;由此可证明直线PA,PB都是⊙O的切线,其依据是 .请写出证明过程.
在一个不透明的布带中装有黄色、白色乒乓球共个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到黄色球的频率稳定在左右,则口袋中白色球可能有________个.
如图,在△ABC中,∠ACB=90°,AC=BC,△ABC的高CD与角平分线AE相交点F,过点C作CH⊥AE于G,交AB于H.
(1)直接写出∠CFE的度数________;
(2)求证:CF=BH.
如图,在Rt△ABC中,∠C=90°,以△ABC的一边BC为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为( )
A. 2 B. 3 C. 4 D. 5
已知:函数y=ax2-(3a+1)x+2a+1(a为常数).
(1)若该函数图象与坐标轴只有两个交点,求a的值;
(2)若该函数图象是开口向上的抛物线,与x轴交于点A(x1,0),B(x2,0),与y轴交于点C,且x2-x1=2.
①求抛物线的表达式;
②作点A关于y轴的对称点D,连接BC,DC,求sin ∠DCB的值.
二次函数y=x2-2x-3的图象如图所示,若线段AB在x轴上,且AB为2个单位长度,以AB为边作等边△ABC,使点C落在该函数y轴右侧的图象上,则点C的坐标为__.
已知α为锐角,sin (α-20°)=,则α等于( )
A. 20° B. 40° C. 60° D. 80°
一个正方体的每个面都写有一个汉字,其表面展开图如图7所示,那么在该正方体中,和“强”相对的字是_________.