题目内容
如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于
A.20° B.25° C.40° D.50°
不透明的口袋里装有3个球,这3个球分别标有数字1、2、3,这些
球除了数字以外都相同.
(1)如果从袋中任意摸出一个球,那么摸到标有数字为3的球的概率是 ;
(2)小明和小亮进行摸球游戏,游戏规则如下:先由小明从袋中任意摸出一个球,记下球的数字后放回袋中搅匀,再由小亮从袋中任意摸出一个球,记下球的数字.谁摸出的球的数字大,谁获胜.这个游戏规则对双方公平吗?请说明理由.
已知实数m,n满足m﹣n2=2,则代数式m2+2n2+4m﹣1的最小值等于( )
A.-14 B.-6 C.8 D.11
如图,直线l与半径为4的⊙O相切于点A,P是⊙O上一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接PA,设PA=x,PB=y,则x-y的最大值是__ _.
如图,在平面直角坐标系xoy中,点O为坐标原点,抛物线与x轴交于点A(,0)、B(2,0),与y轴交于点C,以O为圆心,半径为1的⊙O恰好经过点C,与x轴的正半轴交于点D.
(1)求抛物线相应的函数表达式;
(2)抛物线的对称轴交x轴于点E,连结CE,并延长CE交⊙O于F,求EF的长.
(3)设点P(m,n)为⊙O上的任意一点,当的值最大时,求此时直线BP
相应的函数表达式.
为了解某市今年九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分组(A:40分;B:39-37分;C:36-34分;D:33-28分;E:27-0分)统计如下:
根据上面提供的信息,回答下列问题:
(1)这次调查中,抽取的学生人数为多少?并将条形统计图补充完整;
(2)如果把成绩在34分以上(含34分)定为优秀,估计该市今年9000名九年级学生中,体育成绩为优秀的学生人数有多少人?
下列运算中,正确的是( )
A. B. C. D.
定义新运算:a⊕b=例如:4⊕5=,4⊕(-5)=-.则函数y=2⊕x(x≠0)的图象大致是( )