题目内容
因式分解:
①3x-12x3
②(x+y)3-4xy(x+y)
①3x-12x3
②(x+y)3-4xy(x+y)
考点:提公因式法与公式法的综合运用
专题:
分析:①先提取公因式3x,再对余下的多项式利用平方差公式继续分解;
②先提取公因式(x+y),再对余下的多项式利用完全平方公式继续分解.
②先提取公因式(x+y),再对余下的多项式利用完全平方公式继续分解.
解答:解:①3x-12x3
=3x(1-4x2)
=3x(1+2x)(1-2x);
②(x+y)3-4xy(x+y)
=(x+y)[(x+y)2-4xy]
=(x+y)(x-y)2.
=3x(1-4x2)
=3x(1+2x)(1-2x);
②(x+y)3-4xy(x+y)
=(x+y)[(x+y)2-4xy]
=(x+y)(x-y)2.
点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
练习册系列答案
相关题目
下列结论中错误的是( )
| A、五边形最少有两个钝角 |
| B、任意四边形一组对边中点的边线长不大于另一组对边长度和的一半 |
| C、平行四边形即是轴对称图形又是中心对称图形 |
| D、六边形共有九条对角线 |
| A、45° | B、90° |
| C、60° | D、30° |