题目内容

如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF.给出下列五个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=.其中正确结论的序号是( )

A. ①②③④ B. ①②④⑤ C. ②③④⑤ D. ①③④⑤

B.

【解析】

试题分析:过P作PG⊥AB于点G,

∵点P是正方形ABCD的对角线BD上一点,

∴GP=EP,

在△GPB中,∠GBP=45°,

∴∠GPB=45°,

∴GB=GP,

同理,得

PE=BE,

∵AB=BC=GF,

∴AG=AB-GB,FP=GF-GP=AB-GB,

∴AG=PF,

∴△AGP≌△FPE,

①∴AP=EF;

∠PFE=∠GAP

∴④∠PFE=∠BAP,

②延长AP到EF上于一点H,

∴∠PAG=∠PFH,

∵∠APG=∠FPH,

∴∠PHF=∠PGA=90°,即AP⊥EF;

③∵点P是正方形ABCD的对角线BD上任意一点,∠ADP=45度,

∴当∠PAD=45度或67.5度或90度时,△APD是等腰三角形,

除此之外,△APD不是等腰三角形,故③错误.

∵GF∥BC,

∴∠DPF=∠DBC,

又∵∠DPF=∠DBC=45°,

∴∠PDF=∠DPF=45°,

∴PF=EC,

∴在Rt△DPF中,DP2=DF2+PF2=EC2+EC2=2EC2,

∴⑤DP=EC.

∴其中正确结论的序号是①②④⑤.

故选B.

考点:1.正方形的性质;2.全等三角形的判定与性质.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网