题目内容
如图,已知△ABC,AB = AC = 1,∠A = 36°,∠ABC的平分线BD交AC于点D,则AD的长是 .
如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是( )
A. B. C. D.
如图,平面直角坐标系中有一个正六边形ABCDEF,其中C.D的坐标分别为(1,0)和(2,0).若在无滑动的情况下,将这个六边形沿着x轴向右滚动,则在滚动过程中,这个六边形的顶点A,B,C,D,E,F中,会过点(2015,2)的是点 .
在平面直角坐标系xOy中,已知动点P在正比例函数y = x的图象上,点P的横坐标为m (m > 0).以点P为圆心,m为半径的圆交x轴于A、B两点(点A在点B的左侧),交y轴于C、D两点(D点在点C的上方).点E为平行四边形DOPE的顶点(如图).
(1)直接写出点B、E的坐标(用含m的代数式表示);
(2)连接DB、BE,设△BDE的外接圆交y轴于点Q (点Q异于点D),连接EQ、BQ.试问线段BQ与线段EQ的长是否相等?为什么?
(3)连接BC,求∠DBC ∠DBE的度数.
如图,△ABC中,CD是边AB上的高,且.
(1)求证:△ACD∽△CBD;
(2)求∠ACB的大小.
如图,在Rt△ABC中,∠C = 90°,AB = 2BC,则sinA的值为 .
两个相似三角形的相似比为9∶5,则它们的面积比为 ( )
A.9∶ 5 B.81∶ 25 C.3∶ D.不能确定
如图,四边形ABCD内接于⊙O,且OB∥DC,OD∥BC,则∠BAD= °.
某商场将每件进价为80元的某种商品原来按每件100元出售,每天可售出100件,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经过市场调查,发现这种商品售价每降低1元,商场销售量平均每天可增加10件,若商场经营该商品一天要获利润2160元,且让顾客得到实惠,则每件商品应降价多少元?