题目内容
光年是天文学中的距离单位,1光年大约是9500 000 000 000km,这个数据用科学计数法表示是( )
A. km B. km C. km D. km
(1)如图1,在△ABC中∠A=60 º,BD、CE均为△ABC的角平分线且相交于点O.
①填空:∠BOC= 度;
②求证:BC=BE+CD.(写出求证过程)
(2)如图2,在△ABC中,AB=AC=m,BC=n, CE平分∠ACB.
①若△ABC的面积为S,在线段CE上找一点M,在线段AC上找一点N,使得AM+MN的值最小,则AM+MN的最小值是 .(直接写出答案);
②若∠A=20°,则△BCE的周长等于 .(直接写出答案).
,那么等于( )
A. B. C. D.
一份试卷共25道选择题,规定答对一道题得4分,答错或不答一题扣1分,有人得了80分,问此人答对了 道题。
为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,我市积极落实节能减排政策,推行绿色建筑,据统计,我市2014年的绿色建筑面积约为950万平方米,2016年达到了1862万平方米.若2015年、2016年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:
(1)求这两年我市推行绿色建筑面积的年平均增长率;
(2)2017年我市计划推行绿色建筑面积达到2400万平方米.如果2017年仍保持相同的年平均增长率,请你预测2017年我市能否完成计划目标?
如图,若点A的坐标为(1, ),则sin∠1=______.
为了解某中学六(1)班学生喜欢球类活动的情况,采取全面调查的方法(要求每位学生只能选择一种自己喜欢的球类),并绘制扇形统计图(如图所示),其中喜欢篮球的学生有12人,喜欢足球的学生有8人,请你根据图中提供的信息解答下列问题:
(1)求六(1)班喜欢乒乓球的人数;
(2)扇形统计图中m=_________,表示“排球”的扇形的圆心角是________度;
(3)学校要从六(1)班喜欢乒乓球的同学中随机选取2名学生参加学校的乒乓队,六(1)班的小明选了“喜欢乒乓球”,那么小明被选中的可能性大小是____________.
等腰三角形的一个外角是140,则其底角是