题目内容

4.若$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$+…+$\frac{1}{(2n-1)(2n+1)}$的值为$\frac{17}{35}$,求n的值.

分析 原式利用拆项法变形,列出方程求出解即可得到n的值.

解答 解:根据题意得:$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$+…+$\frac{1}{(2n-1)(2n+1)}$=$\frac{17}{35}$,
变形得:$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+$\frac{1}{5}$-$\frac{1}{7}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)=$\frac{17}{35}$,
即$\frac{n}{2n+1}$=$\frac{17}{35}$,
去分母得:35n=34n+17,
移项合并得:n=17.

点评 此题考查了分式的加减法,熟练掌握拆项法是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网