题目内容
如图,某班上体育课,甲、乙两名同学分别站在点C,D的位置时,乙的影子恰好在甲的影子里边,已知甲身高1.8米,乙身高1.5米,甲的影长是6米,则甲、乙同学相距____米.
已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.
(1)求证:EG=CG;
(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.
问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论(均不要求证明).
下列说法中,正确的是( ).
A. 买一张电影票,座位号一定是奇数
B. 投掷一枚均匀的硬币,正面一定朝上
C. 从, , , , 这五个数字中任意取一个数,取得奇数的可能性大
D. 三个点一定可以确定一个圆
不解方程,判别方程的根的情况( )
A.有两个相等的实数根
B.有两个不相等的实数根
C.有一个实数根
D.无实数根
下列结论正确的是( )
A. .若a2=b2,则a=b; B. 若a>b,则a2>b2;
C. 若a,b不全为零,则a2+b2>0; D. 若a≠b,则 a2≠b2.
如图,已知等边三角形OAB的顶点O(0,0),A(0,6),将该三角形绕点O顺时针旋转,每次旋转60°,则旋转2017次后,顶点B的坐标为_____.
关于x的方程的一个根是-1,则m=______.
已知A、B两点在直线的同侧,试在上找两点C和D(CD的长度为定值),使得AC+CD+DB最短(保留作图痕迹,不要求写画法)。
如图,点A是反比例函数y=(>0)的图象上任意一点,AB∥x轴交反比例函数y=﹣的图象于点B,以AB为边作平行四边形ABCD,其中C,D在x轴上,则平行四边形ABCD的面积为( )
A. 2 B. 3 C. 4 D. 5