题目内容
观察算式:
=1-
=
,
+
=1-
+
-
=
+
+
=1-
+
-
+
-
=
按规律填空
+
+
+
=
+
+
+
+…+
=
;
如果n为正整数,那么
+
+
+
+…+
=
.
由此拓展写出具体过程,
+
+
+…+
=.
| 1 |
| 1×2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 3 |
| 4 |
按规律填空
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 4×5 |
| 4 |
| 5 |
| 4 |
| 5 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 4×5 |
| 1 |
| 99×100 |
| 99 |
| 100 |
| 99 |
| 100 |
如果n为正整数,那么
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 4×5 |
| 1 |
| n×(n+1) |
| n |
| n+1 |
| n |
| n+1 |
由此拓展写出具体过程,
| 1 |
| 1×3 |
| 1 |
| 3×5 |
| 1 |
| 5×7 |
| 1 |
| 99×101 |
分析:通过填空与观察,如果分数的分母为两个连续自然数的乘积,可以把这个分数拆分成两个分数相减的形式,据此解答.
解答:解:
+
+
+
=1-
+
-
+
-
+
-
=1-
=
;
+
+
+
+…+
=1-
+
-
+
-
+
-
+…+
-
=1-
=
;
+
+
+
+…+
=1-
+
-
+
-
+
-
+…+
-
=1-
=
;
+
+
+…+
=
×(1-
+
-
+…+
-
)
=
×(1-
)
=
×
=
.
故答案为:
;
;
.
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 4×5 |
=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
=1-
| 1 |
| 5 |
=
| 4 |
| 5 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 4×5 |
| 1 |
| 99×100 |
=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 99 |
| 1 |
| 100 |
=1-
| 1 |
| 100 |
=
| 99 |
| 100 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 4×5 |
| 1 |
| n×(n+1) |
=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| n |
| 1 |
| n+1 |
=1-
| 1 |
| n+1 |
=
| n |
| n+1 |
| 1 |
| 1×3 |
| 1 |
| 3×5 |
| 1 |
| 5×7 |
| 1 |
| 99×101 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 99 |
| 1 |
| 101 |
=
| 1 |
| 2 |
| 1 |
| 101 |
=
| 1 |
| 2 |
| 100 |
| 101 |
=
| 50 |
| 101 |
故答案为:
| 4 |
| 5 |
| 99 |
| 100 |
| n |
| n+1 |
点评:考查了有理数的混合运算,如果分数的分母为两个连续自然数的乘积,可以把这个分数拆分成两个分数相减的形式,然后通过加减相抵消的方法,求得结果.
练习册系列答案
相关题目