题目内容

16.如图,△ABC的边AC与⊙O相交于C,D两点,且经过圆心O,边AB与⊙O相切,切点为B.如果∠A=34°,那么∠C等于(  )
A.28°B.33°C.34°D.56°

分析 连结OB,如图,根据切线的性质得∠ABO=90°,则利用互余可计算出∠AOB=90°-∠A=56°,再利用三角形外角性质得∠C+∠OBC=56°,加上∠C=∠OBC,于是有∠C=$\frac{1}{2}$×56°=28°.

解答 解:连结OB,如图,
∵AB与⊙O相切,
∴OB⊥AB,
∴∠ABO=90°,
∴∠AOB=90°-∠A=90°-34°=56°,
∵∠AOB=∠C+∠OBC,
∴∠C+∠OBC=56°,
而OB=OC,
∴∠C=∠OBC,
∴∠C=$\frac{1}{2}$×56°=28°.
故选A.

点评 本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网