题目内容
13.方程组$\left\{\begin{array}{l}{{x}^{3}y=35-y}\\{{x}^{2}y=30-xy}\end{array}\right.$的解为$\left\{\begin{array}{l}{x=\frac{3}{2}}\\{y=8}\end{array}\right.$或$\left\{\begin{array}{l}{x=\frac{2}{3}}\\{y=27}\end{array}\right.$.分析 由方程①可得y=$\frac{35}{{x}^{3}+1}$,由方程②得y=$\frac{30}{{x}^{2}+x}$,即可得$\frac{35}{{x}^{3}+1}$=$\frac{30}{{x}^{2}+x}$,解之可得x的值,再代入y=$\frac{30}{{x}^{2}+x}$求得y即可.
解答 解:$\left\{\begin{array}{l}{{x}^{3}y=35-y①}\\{{x}^{2}y=30-xy②}\end{array}\right.$,
由①得:y=$\frac{35}{{x}^{3}+1}$,
由②得:y=$\frac{30}{{x}^{2}+x}$,
∴$\frac{35}{{x}^{3}+1}$=$\frac{30}{{x}^{2}+x}$,
∴7x(x+1)=6(x+1)(x2-x+1),
∴(2x-3)(3x-2)=0,
解得:x=$\frac{3}{2}$或x=$\frac{2}{3}$,
当x=$\frac{3}{2}$时,y=8;当x=$\frac{2}{3}$时,y=27;
∴方程组的解为:$\left\{\begin{array}{l}{x=\frac{3}{2}}\\{y=8}\end{array}\right.$或$\left\{\begin{array}{l}{x=\frac{2}{3}}\\{y=27}\end{array}\right.$,
故答案为:$\left\{\begin{array}{l}{x=\frac{3}{2}}\\{y=8}\end{array}\right.$或$\left\{\begin{array}{l}{x=\frac{2}{3}}\\{y=27}\end{array}\right.$.
点评 此题主要考查了高次方程组的解法,涉及因式分解中的提取公因式和立方和公式以及用十字相乘法进行分解因式,对方程中的每一个方程正确的变形是解题的关键.