题目内容

一直角三角形的两条直角边之和是6,则以这个直角三角形的斜边为边长的正方形的面积最小值是
 
考点:勾股定理,二次函数的最值
专题:
分析:设直角三角形的一直角边为x,则另一直角边长为6-x,再根据勾股定理求出斜边的长,由三角形的面积公式即可得出结论.
解答:解:∵直角三角形的两条直角边之和是6,
∴直角三角形的一直角边为x,斜边长为y,则另一直角边长为6-x,
∴S=x(6-x),即S=-x2+6x,
∴S最小=
-62
4×(-1)
=
-36
-4
=9.
故答案为:9.
点评:本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网