题目内容
(a+
|
(b-2
|
| a2-2ab+b2 |
分析:根据数轴得出-3<a<-2,4<b<5,推出a<-
,b>2
,a-b<0,根据二次根式的性质得出|a+
|-|b-2
|-|a-b|,推出-(a+
)-(b-2
)-[-(a-b)],求出即可.
| 3 |
| 3 |
| 3 |
| 3 |
| 3 |
| 3 |
解答:解:根据数轴可知:-3<a<-2,4<b<5,
∴a<-
,b>2
,a-b<0,
∴
-
-
=|a+
|-|b-2
|-|a-b|
=-(a+
)-(b-2
)-[-(a-b)]
=-a-
-b+2
+a-b
=
-2b.
∴a<-
| 3 |
| 3 |
∴
(a+
|
(b-2
|
| a2-2ab+b2 |
=|a+
| 3 |
| 3 |
=-(a+
| 3 |
| 3 |
=-a-
| 3 |
| 3 |
=
| 3 |
点评:本题考查了绝对值,二次根式的性质的应用,关键是根据数轴和二次根式的性质得出|a+
|-|b-2
|-|a-b|和-(a+
)-(b-2
)-[-(a-b)],题目比较典型,但是一道比较容易出错的题目.
| 3 |
| 3 |
| 3 |
| 3 |
练习册系列答案
相关题目