题目内容

20.如图,在△ABC中,CD是∠ACB的平分线,∠B=40°,∠A=80°,那么∠BDC=(  )
A.80°B.90°C.100°D.110°

分析 根据三角形的内角和得出∠ACB的度数,再根据角平分线的性质求出∠DCA的度数,再根据三角形内角与外角的关系求出∠BDC的度数.

解答 解:∵∠A+∠B+∠ACB=180°(三角形内角和定理),
∴∠ACB=180°-∠A-∠B=180°-80°-40°=60°,
∵CD是∠ACB的平分线,
∴$∠ACD=\frac{1}{2}$∠ACB=30°(角平分线的性质),
∴∠BDC=∠ACD+∠A=30°+80°=110°(三角形外角的性质).
故选D.

点评 本题主要考查了三角形的内角和定理,角平分线的定义及三角形外角的知识,三角形的一个外角等于与它不相邻的两个内角的和,难度适中.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网