题目内容
如图,正方形中,对角线相交于点,是上的动点(不与重合),过作,垂足为,交于,过作,垂足为.
(1)求证:;
(2)设,当三点在同一直线上时,求的长.
如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是( )
A. 12 B. 16 C. 20 D. 24
某旅游商品经销店欲购进A、B两种纪念品,若用380元购进A种纪念品7件,B种纪念品8件;也可以用380元购进A种纪念品10件,B种纪念品6件.
(1)求A、B两种纪念品的进价分别为多少?
(2)若该商店每销售1件A种纪念品可获利5元,每销售1件B种纪念品可获利7元,该商店准备用不超过900元购进A、B两种纪念品40件,且这两种纪念品全部售出时总获利不低于216元,问应该怎样进货,才能使总获利最大,最大为多少?
关于x、y的二元一次方程组 的解是二元一次方程的解,则k的值是( )
A. B. C. D.
若与﹣互为倒数,则x的值是( )
A. B. ﹣ C. D. ﹣
若关于的方程的解为正数,求的取值范围.
若实数满足,则的立方根为__________.
完成证明并写出推理根据
已知,如图,∠1=132,∠ACB=48,∠2=∠3,FH⊥AB于H,
求证:CD⊥AB.
证明:∵∠1=132, ∠ACB=48
∴∠l+∠ACB=180
∴DE∥BC
∴∠2=∠DCB( )
又∵∠2=∠3
∴∠3=∠DCB( )
∴HF∥DC ( )
∴∠CDB=∠FHB. ( )
又∵FH⊥AB,
∴∠FHB=90
∴∠CDB=
∴CD⊥AB. ( )
如图,在平行四边形OABC中,已知点A、C两点的坐标为A (,),C (2,0).
(1)求点B的坐标.
(2)将平行四边形OABC向左平移个单位长度,求所得四边形A′B′C′O′四个顶点的坐标.
(3)求平行四边形OABC的面积.