题目内容

如图,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,⊙O为△ABC的内切圆.
(1)求⊙O的半径;
(2)点P从点B沿边BA向点A以1cm/s的速度匀速运动,以P为圆心,PB长为半径作圆,设点P运动的时间为t s,若⊙P与⊙O相切,求t的值.
考点:圆的综合题
专题:几何图形问题,压轴题,动点型
分析:(1)求圆的半径,因为相切,我们通常连接切点和圆心,设出半径,再利用圆的性质和直角三角形性质表示其中关系,得到方程,求解即得半径.
(2)考虑两圆相切,且一圆已固定,一般就有两种情形,外切与内切.所以我们要分别讨论,当外切时,圆心距等于两圆半径的和;当内切时,圆心距等于大圆与小圆半径的差.分别作垂线构造直角三角形,类似(1)通过表示边长之间的关系列方程,易得t的值.
解答:解:(1)如图1,设⊙O与AB、BC、CA的切点分别为D、E、F,连接OD、OE、OF,

则AD=AF,BD=BE,CE=CF.
∵⊙O为△ABC的内切圆,
∴OF⊥AC,OE⊥BC,即∠OFC=∠OEC=90°.
∵∠C=90°,
∴四边形CEOF是矩形,
∵OE=OF,
∴四边形CEOF是正方形.
设⊙O的半径为rcm,则FC=EC=OE=rcm,
在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,
∴AB=
AC2+BC2
=5cm.
∵AD=AF=AC-FC=4-r,BD=BE=BC-EC=3-r,
∴4-r+3-r=5,
解得 r=1,即⊙O的半径为1cm.

(2)如图2,过点P作PG⊥BC,垂足为G.

∵∠PGB=∠C=90°,
∴PG∥AC.
∴△PBG∽△ABC,
PG
AC
=
BG
BC
=
BP
BA

∵BP=t,
∴PG=
AC
BA
×BP
=
4
5
t
,BG=
BC
BA
×BP
=
3
5
t

若⊙P与⊙O相切,则可分为两种情况,⊙P与⊙O外切,⊙P与⊙O内切.
①当⊙P与⊙O外切时,

如图3,连接OP,则OP=1+t,过点P作PH⊥OE,垂足为H.
∵∠PHE=∠HEG=∠PGE=90°,
∴四边形PHEG是矩形,
∴HE=PG,PH=GE,
∴OH=OE-HE=1-
4
5
t
,PH=GE=BC-EC-BG=3-1-
3
5
t
=2-
3
5
t

在Rt△OPH中,
由勾股定理,(1-
4
5
t)2+(2-
3
5
t)2=(1+t)2

解得 t=
2
3


②当⊙P与⊙O内切时,

如图4,连接OP,则OP=t-1,过点O作OM⊥PG,垂足为M.
∵∠MGE=∠OEG=∠OMG=90°,
∴四边形OEGM是矩形,
∴MG=OE,OM=EG,
∴PM=PG-MG=
4
5
t-1

OM=EG=BC-EC-BG=3-1-
3
5
t
=2-
3
5
t

在Rt△OPM中,
由勾股定理,(
4
5
t-1)2+(2-
3
5
t)2=(t-1)2

解得 t=2.
综上所述,⊙P与⊙O相切时,t=
2
3
s或t=2s.
点评:本题考查了圆的性质、两圆相切及通过设边长,表示其他边长关系再利用直角三角形求解等常规考查点,总体题目难度不高,是一道非常值得练习的题目.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网