题目内容
定义1:在
中,若顶点
,
,
按逆时针方向排列,则规定它的面积为“有向面积”;若顶点
,
,
按顺时针方向排列,则规定它的面积的相反数为
的“有向面积”。“有
向面积”用
表示,
![]()
![]()
例如图1中,
,图2中,
。
定义2:在平面内任取一个
和点
(点
不在
的三边所在直线上),称有序数组(
,
,
)为点
关于
的“
面积坐标”,记作
,例如图3中,菱形
的边长为2,
,则
,点
关于
的“面积坐标”
为
。
在图3中,我们知道
,利用“有向面积”,我们也可以把上式表示为:
。
应用新知:
(1)如图4,正方形
的边长为1,则
,点
关于
的“面积坐标”是 ;
探究发现:
(2)在平面直角坐标系
中,点
,
.
①若点
是第二象限内任意一点(不在直线
上),设点
关于
的“面积坐标”为
,
试探究
与
之间有怎样的数量关系,并说明理由;
②若点
是第四象限内任意一点,请直接写出点
关于
的“面积坐标”(用
表示);
解决问题:
(3)在(2)的条件下,点
,
,点
在抛物线
上,求当
的值最小时,点
的横坐标。
练习册系列答案
相关题目
某市2014年4月份一周空气质量报告中某种污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数和众数分别是( )
A.32,31 B.31,32 C.31,31 D.32,35
如图,在反比例函数
的图象上,有点
,
,
,![]()
……
(n为正整数,且n≥1),它们的横坐标依次为1,2,3,4……
(n为正整数,且n≥1).分别过这些点作
| |
![]()