ÌâÄ¿ÄÚÈÝ
7£®£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÔÚµÚ¶þÏóÏÞÄÚȡһµãC£¬×÷CD´¹Ö±XÖáÓÚµãD£¬Á´½ÓAC£¬ÇÒAD=5£¬CD=8£¬½«Rt¡÷ACDÑØxÖáÏòÓÒÆ½ÒÆm¸öµ¥Î»£¬µ±µãCÂäÔÚÅ×ÎïÏßÉÏʱ£¬ÇómµÄÖµ£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬µ±µãCµÚÒ»´ÎÂäÔÚÅ×ÎïÏßÉϼÇΪµãE£¬µãPÊÇÅ×ÎïÏß¶Ô³ÆÖáÉÏÒ»µã£®ÊÔ̽¾¿£ºÔÚÅ×ÎïÏßÉÏÊÇ·ñ´æÔÚµãQ£¬Ê¹ÒÔµãB¡¢E¡¢P¡¢QΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐΣ¿Èô´æÔÚ£¬Çë³öµãQµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©ÓÉA¡¢BµÄ×ø±ê£¬ÀûÓôý¶¨ÏµÊý·¨¿ÉÇóµÃÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÓÉÌâÒâ¿ÉÇóµÃCµã×ø±ê£¬ÉèÆ½ÒÆºóµÄµãCµÄ¶ÔÓ¦µãΪC¡ä£¬ÔòC¡äµãµÄ×Ý×ø±êΪ8£¬´úÈëÅ×ÎïÏß½âÎöʽ¿ÉÇóµÃC¡äµãµÄ×ø±ê£¬Ôò¿ÉÇóµÃÆ½ÒÆµÄµ¥Î»£¬¿ÉÇóµÃmµÄÖµ£»
£¨3£©ÓÉ£¨2£©¿ÉÇóµÃEµã×ø±ê£¬Á¬½ÓBE½»¶Ô³ÆÖáÓÚµãM£¬¹ýE×÷EF¡ÍxÖáÓÚµãF£¬µ±BEΪƽÐÐËıßÐεıßʱ£¬¹ýQ×÷¶Ô³ÆÖáµÄ´¹Ïߣ¬´¹×ãΪN£¬Ôò¿ÉÖ¤µÃ¡÷PQN¡Õ¡÷EFB£¬¿ÉÇóµÃQN£¬¼´¿ÉÇóµÃQµ½¶Ô³ÆÖáµÄ¾àÀ룬Ôò¿ÉÇóµÃQµãµÄºá×ø±ê£¬´úÈëÅ×ÎïÏß½âÎöʽ¿ÉÇóµÃQµã×ø±ê£»µ±BEΪ¶Ô½ÇÏßʱ£¬ÓÉB¡¢EµÄ×ø±ê¿ÉÇóµÃÏß¶ÎBEµÄÖеã×ø±ê£¬ÉèQ£¨x£¬y£©£¬ÓÉPµãµÄºá×ø±êÔò¿ÉÇóµÃQµãµÄºá×ø±ê£¬´úÈëÅ×ÎïÏß½âÎöʽ¿ÉÇóµÃQµãµÄ×ø±ê£®
½â´ð ½â£º
£¨1£©¡ßÅ×ÎïÏßy=-x2+bx+cÓëxÖá·Ö±ð½»ÓÚA£¨-1£¬0£©£¬B£¨5£¬0£©Á½µã£¬
¡à$\left\{\begin{array}{l}{-1-b+c=0}\\{-25+5b+c=0}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{b=4}\\{c=5}\end{array}\right.$£¬
¡àÅ×ÎïÏß½âÎöʽΪy=-x2+4x+5£»
£¨2£©¡ßAD=5£¬ÇÒOA=1£¬
¡àOD=6£¬ÇÒCD=8£¬
¡àC£¨-6£¬8£©£¬
ÉèÆ½ÒÆºóµÄµãCµÄ¶ÔÓ¦µãΪC¡ä£¬ÔòC¡äµãµÄ×Ý×ø±êΪ8£¬
´úÈëÅ×ÎïÏß½âÎöʽ¿ÉµÃ8=-x2+4x+5£¬½âµÃx=1»òx=3£¬
¡àC¡äµãµÄ×ø±êΪ£¨1£¬8£©»ò£¨3£¬8£©£¬
¡ßC£¨-6£¬8£©£¬
¡àµ±µãCÂäÔÚÅ×ÎïÏßÉÏʱ£¬ÏòÓÒÆ½ÒÆÁË7»ò9¸öµ¥Î»£¬
¡àmµÄֵΪ7»ò9£»
£¨3£©¡ßy=-x2+4x+5=-£¨x-2£©2+9£¬
¡àÅ×ÎïÏß¶Ô³ÆÖáΪx=2£¬
¡à¿ÉÉèP£¨2£¬t£©£¬
ÓÉ£¨2£©¿ÉÖªEµã×ø±êΪ£¨1£¬8£©£¬
¢Ùµ±BEΪƽÐÐËıßÐεıßʱ£¬Á¬½ÓBE½»¶Ô³ÆÖáÓÚµãM£¬¹ýE×÷EF¡ÍxÖáÓÚµãF£¬¹ýQ×÷¶Ô³ÆÖáµÄ´¹Ïߣ¬´¹×ãΪN£¬Èçͼ£¬![]()
Ôò¡ÏBEF=¡ÏBMP=¡ÏQPN£¬
ÔÚ¡÷PQNºÍ¡÷EFBÖÐ
$\left\{\begin{array}{l}{¡ÏQPN=¡ÏBEF}\\{¡ÏPNQ=¡ÏEFB}\\{PQ=BE}\end{array}\right.$
¡à¡÷PQN¡Õ¡÷EFB£¨AAS£©£¬
¡àNQ=BF=OB-OF=5-1=4£¬
ÉèQ£¨x£¬y£©£¬ÔòQN=|x-2|£¬
¡à|x-2|=4£¬½âµÃx=-2»òx=6£¬
µ±x=-2»òx=6ʱ£¬´úÈëÅ×ÎïÏß½âÎöʽ¿ÉÇóµÃy=-7£¬
¡àQµã×ø±êΪ£¨-2£¬-7£©»ò£¨6£¬-7£©£»
¢Úµ±BEΪ¶Ô½ÇÏßʱ£¬
¡ßB£¨5£¬0£©£¬E£¨1£¬8£©£¬
¡àÏß¶ÎBEµÄÖеã×ø±êΪ£¨3£¬4£©£¬ÔòÏß¶ÎPQµÄÖеã×ø±êΪ£¨3£¬4£©£¬
ÉèQ£¨x£¬y£©£¬ÇÒP£¨2£¬t£©£¬
¡àx+2=3¡Á2£¬½âµÃx=4£¬°Ñx=4´úÈëÅ×ÎïÏß½âÎöʽ¿ÉÇóµÃy=5£¬
¡àQ£¨4£¬5£©£»
×ÛÉÏ¿ÉÖªQµãµÄ×ø±êΪ£¨-2£¬-7£©»ò£¨6£¬-7£©»ò£¨4£¬5£©£®
µãÆÀ ±¾ÌâΪ¶þ´Îº¯ÊýµÄ×ÛºÏÓ¦Óã¬Éæ¼°´ý¶¨ÏµÊý·¨¡¢Æ½ÒƵÄÐÔÖÊ¡¢È«µÈÈý½ÇÐεÄÅж¨ºÍÐÔÖÊ¡¢Æ½ÐÐËıßÐεÄÐÔÖÊ¡¢·½³Ì˼Ïë¼°·ÖÀàÌÖÂÛ˼ÏëµÈ֪ʶ£®ÔÚ£¨1£©×¢Òâ´ý¶¨ÏµÊý·¨µÄÓ¦Óã¬ÔÚ£¨2£©ÖÐÇóµÃÆ½ÒÆºóCµãµÄ¶ÔÓ¦µãµÄ×ø±êÊǽâÌâµÄ¹Ø¼ü£¬ÔÚ£¨3£©ÖÐÈ·¶¨³öQµãµÄλÖÃÊǽâÌâµÄ¹Ø¼ü£®±¾Ì⿼²é֪ʶµã½Ï¶à£¬×ÛºÏÐÔ½ÏÇ¿£¬ÄѶÈÊÊÖУ®
| A£® | ºìºì²»ÊÇʤ¾ÍÊÇÊ䣬ËùÒÔºìºìʤµÄ¸ÅÂÊΪ$\frac{1}{2}$ | |
| B£® | ºìºìʤ»òÄÈÄÈʤµÄ¸ÅÂÊÏàµÈ | |
| C£® | Á½È˳öÏàͬÊÖÊÆµÄ¸ÅÂÊΪ$\frac{1}{3}$ | |
| D£® | ÄÈÄÈʤµÄ¸ÅÂʺÍÁ½È˳öÏàͬÊÖÊÆµÄ¸ÅÂÊÒ»Ñù |
| A£® | ÖÚÊýÊÇ6¶Ö | B£® | ƽ¾ùÊýÊÇ5¶Ö | C£® | ÖÐλÊýÊÇ5¶Ö | D£® | ·½²îÊÇ$\frac{4}{3}$ |
| A£® | ÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù | B£® | ÓÐÁ½¸öÏàµÈµÄʵÊý¸ù | ||
| C£® | ûÓÐʵÊý¸ù | D£® | ÎÞ·¨ÅÐ¶Ï |
¢Ùa-£¨b-c£©=a-b-c£»
¢Ú£¨x2+y£©-2£¨x-y2£©=x2+y-2x+y2
¢Û-£¨a+b£©-£¨-x+y£©=-a+b+x-y£»
¢Ü-3£¨x-y£©+£¨a-b£©=-3x-3y+a-b£®
ÓɵȺÅ×ó±ß±äµ½Óұ߱äÐÎÕýÈ·µÄÓУ¨¡¡¡¡£©
| A£® | 0¸ö | B£® | 1¸ö | C£® | 2¸ö | D£® | 3¸ö |
| A£® | 2a-3a=a | B£® | £¨a3£©2=a6 | C£® | $\sqrt{-2a}$=$\sqrt{-2}$¡Á$\sqrt{a}$ | D£® | a6¡Âa3=a2 |