题目内容

6.如图,在等边△ABC中,点D为△ABC内的一点,∠ADB=120°,∠ADC=90°,将△ABD绕点A逆时针旋转60°得△ACE,连接DE.
(1)求证:AD=DE;
(2)求∠DCE的度数;
(3)若BD=1,求AD,CD的长.

分析 (1)利用旋转的性质和等边三角形的性质先判断出△ADE是等边三角形即可;
(2)利用四边形的内角和即可求出结论;
(3)先求出CD,再用勾股定理即可求出结论.

解答 (1)证明:∵将△ABD绕点A逆时针旋转60°得△ACE
∴△ABD≌△ACE,∠BAC=∠DAE,
∴AD=AE,BD=CE,∠AEC=∠ADB=120°,
∵△ABC为等边三角形
∴∠BAC=60°
∴∠DAE=60°
∴△ADE为等边三角形,
∴AD=DE,
(2)∠ADC=90°,∠AEC=120°,∠DAE=60°
∴∠DCE=360°-∠ADC-∠AEC-∠DAE=90°,
(3)∵△ADE为等边三角形
∴∠ADE=60°
∴∠CDE=∠ADC-∠ADE=30°
又∵∠DCE=90°
∴DE=2CE=2BD=2,
∴AD=DE=2
在Rt△DCE中,$DC=\sqrt{D{E^2}-C{E^2}}=\sqrt{{2^2}-{1^2}}=\sqrt{3}$.

点评 此题是旋转的性质,主要考查了等边三角形的性质和判定,勾股定理,解本题的关键是判断出△ADE是等边三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网