题目内容
如图,AD是⊙O的直径,弦于E,,则_______。
如图1,AB为⊙O的直径,点P是直径AB上任意一点,过点P作弦CD⊥AB,垂足为P,过点B的直线与线段AD的延长线交于点F,且∠F=∠ABC.
(1)若CD=2,BP=4,求⊙O的半径;
(2)求证:直线BF是⊙O的切线;
(3)当点P与点O重合时,过点A作⊙O的切线交线段BC的延长线于点E,在其它条件不变的情况下,判断四边形AEBF是什么特殊的四边形?请在图2中补全图象并证明你的结论.
我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:与x轴、y轴分别交于A、B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P在线段OA上运动时,使得⊙P成为整圆的点P个数是( )
A.6 B.8 C.10 D.12
如图,直线、与直线、相交,已知,,
则
A、 B、 C、 D、
如图,已知二次函数()的图象如图所示,
给出以下四个结论:
①;②;③;④。
其中正确的结论有
A、1个 B、2个 C、3个 D、4个
某超市计划在“十周年”庆典当天开展购物抽奖活动,凡是当天在该超市购物的顾客,均有一次抽奖机会,抽奖规则如下:将如图所示的圆形转盘平均分成四个扇形,分别标上1,2,3,4四个数字,抽奖者连续转动转盘两次,当每次转盘停止指针所指扇形内的数为每次所得的数(若指针指在分界线时重转),当两次所得的数字之和为8时,返还现金20元;当两次所得的数字之和为7时,返还现金15元;当两次所得的数字之和为6时,返还现金10元。
(1)试用树状图或列表的方法表示出一次抽奖所有可能出现的结果。
(2)某顾客参加一次抽奖,能获得反还现金的概率是多少?
今年5月份在贵阳召开了国际大数据产业博览会,据统计,到5月28日为止,来观展的人数已突破64000人次,64000这个数用科学记数法可表示为6.4×10n,则n的值是( )
A.3 B. 4 C. 5 D. 6
小华为了测量楼房AB的高度,他从楼底的B处沿着斜坡向上行走20m,到达坡顶D处.已知斜坡的坡角为15°.(以下计算结果精确到0.1m)
(1)求小华此时与地面的垂直距离CD的值;
(2)小华的身高ED是1.6m,他站在坡顶看楼顶A处的仰角为45°,求楼房AB的高度.
下列几何体中,主视图、左视图、俯视图完全相同的是( )
A.球 B. 圆锥 C. 圆柱 D. 长方体