题目内容
如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为________cm.
2
分析:通过作辅助线,过点O作OD⊥AB交AB于点D,根据折叠的性质可知OA=2OD,根据勾股定理可将AD的长求出,通过垂径定理可求出AB的长.
解答:
解:过点O作OD⊥AB交AB于点D,
∵OA=2OD=2cm,
∴AD=
=
=
cm,
∵OD⊥AB,
∴AB=2AD=
cm.
点评:本题综合考查垂径定理和勾股定理的运用.
分析:通过作辅助线,过点O作OD⊥AB交AB于点D,根据折叠的性质可知OA=2OD,根据勾股定理可将AD的长求出,通过垂径定理可求出AB的长.
解答:
∵OA=2OD=2cm,
∴AD=
∵OD⊥AB,
∴AB=2AD=
点评:本题综合考查垂径定理和勾股定理的运用.
练习册系列答案
相关题目
| A、2cm | ||
B、
| ||
C、2
| ||
D、2
|