题目内容
的相反数是( )
A.2 B.-2 C. D.-
(本小题10分)毕达哥拉斯学派对”数”与”形”的巧妙结合作了如下研究:
请在答题卡上写出第六层各个图形的几何点数,并归纳出第n层各个图形的几何点数.
如图,在中,AB=AD=DC,∠B=70,则C的度数为( )
(A)35 (B)40 (C)45 (D)50
一个学习兴趣小组有4名女生,6名男生,现要从这10名学生中选出一人担任组长,则女生当选组长的概率是 .
下列命题正确的是( )
A.一组对边相等,另一组对边平行的四边形是平行四边形
B.对角线互相垂直的四边形是菱形
C.对角线相等的四边形是矩形
D.对角线互相垂直平分且相等的四边形是正方形
(7分)某班同学响应“阳光体育运动”号召,利用课外时间积极参加体育锻炼,每位同学从长跑、铅球、立定跳远、篮球定时定点投篮中任选一项进行训练,训练后进行了测试,现将项目选择情况及训练后篮球定时定点投篮进球数进行整理,作出了如下统计图表:
请你根据图表中的信息回答下列问题:
(1)训练后篮球定时定点投篮人均进球数为 个;
(2)选择长跑训练的人数占全班人数的百分比是 ,该班共有学生 人;
(3)根据测试数据,参加篮球定时定点投篮的学生训练后比训练前人均进球数增加了25%,求参加训练之前的人均进球类数.
如图,半圆O的直径AE=4,点B,C,D均在半圆上,若AB=BC,CD=DE,连接OB,OD,则图中阴影部分的面积为 .
(本小题12分)已知二次函数的图象经过点(2,1)。
(1)求二次函数的解析式;
(2)一次函数的图象与二次函数的图象交于点A(,),B(,)两点
①当时(图①),求证:△AOB为直角三角形;
②试判断当时(图②),△AOB的形状,并证明;
(3)根据第(2)问,说出一条你能得到的结论(不要求证明)。
分解因式:=________________.