题目内容

13.已知,如图,△ABC中,CD平分∠ACB,DE∥BC,AD:DB=7:5,AC=24,求DE的长.

分析 根据平行线分线段成比例的知识求出AE,EC,然后判断ED=EC,即可得出答案.

解答 解:∵DE∥BC,
∴$\frac{AD}{DB}=\frac{AE}{EC}=\frac{7}{5}$,
又∵AC=24,
∴AE=14,EC=10,
∵CD平分∠ACB交AB于D,
∴∠ACD=∠DCB,
又∵DE∥BC,
∴∠EDC=∠DCB,
∴∠ACD=∠EDC,
∴DE=EC=10.

点评 本题考查了相似三角形的判定与性质,解答本题的关键是掌握平行线的性质及相似三角形的性质:对应边成比例,难度一般.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网