搜索
题目内容
如图,边长为2的正方体中,一只蚂蚁从A顶点出发沿着正方体的外表面爬到B顶点的最短路程是( )
A.6
B.
2
5
C.4
D.2+2
2
试题答案
相关练习册答案
分析:
要求正方体中两点之间的最短路径,最直接的作法,就是将正方体展开,然后利用两点之间线段最短解答.
解答:
解:如图将正方体展开,根据“两点之间,线段最短”知,线段AB即为最短路线.
AB=
2
2
+
4
2
=2
5
.
故选B.
点评:
本题是一道平面展开-最短路径问题,本题主要考查两点之间线段最短.
练习册系列答案
高效复习方案期中期末复习卷系列答案
四步导学高效学练方案大试卷系列答案
优佳好卷与教学完美结合系列答案
同步大试卷系列答案
全优冲刺100分系列答案
宝贝计划夺冠100分系列答案
期末金卷100分系列答案
开心闯关100分系列答案
英才点津系列答案
练考通全优卷系列答案
相关题目
如图,边长为
π
2
的正△ABC,点A与原点O重合,若将该正三角形沿数轴正方向翻滚一周,点A恰好与数轴上的点A′重合,则点A′对应的实数是
.
如图,边长为6的正方OABC的顶点O在坐标原点处,点A、C分别在x轴、y轴的正半轴上,点E是OA边上的点(不与点A重合),EF⊥CE,且与正方形外角平分线AC交于点P.
(1)当点E坐标为(3,0)时,证明CE=EP;
(2)如果将上述条件“点E坐标为(3,0)”改为“点E坐标为(t,0)”,结论CE=EP是否仍然成立,请说明理由;
(3)在y轴上是否存在点M,使得四边形BMEP是平行四边形?若存在,用t表示点M的坐标;若不存在,说明理由.
如图,边长为6的正方OABC的顶点O在坐标原点处,点A、C分别在x轴、y轴的正半轴上,点E是OA边上的点(不与点A重合),EF⊥CE,且与正方形外角平分线AC交于点P.
(1)当点E坐标为(3,0)时,证明CE=EP;
(2)如果将上述条件“点E坐标为(3,0)”改为“点E坐标为(t,0)”,结论CE=EP是否仍然成立,请说明理由;
(3)在y轴上是否存在点M,使得四边形BMEP是平行四边形?若存在,用t表示点M的坐标;若不存在,说明理由.
如图将边长为1的正方形OAPB沿
轴正方向连续翻转2006次,点P依次落在点
,
,
,
,……
的位置,则
的横坐标
=_________.
如图,边长为6的正方OABC的顶点O在坐标原点处,点A、C分别在x轴、y轴的正半轴上,点E是OA边上的点(不与点A重合),EF⊥CE,且与正方形外角平分线AC交于点P.
(1)当点E坐标为(3,0)时,证明CE=EP;
(2)如果将上述条件“点E坐标为(3,0)”改为“点E坐标为(t,0)”,结论CE=EP是否仍然成立,请说明理由;
(3)在y轴上是否存在点M,使得四边形BMEP是平行四边形?若存在,用t表示点M的坐标;若不存在,说明理由.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案