题目内容
如图,在△ABC中,CD是AB边上的中线,已知∠B=45°,tan∠ACB=3,AC=,求:
(1)△ABC的面积;
(2)sin∠ACD的值.
如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S△BEF=.在以上4个结论中,正确的有( )
A.1 B.2 C.3 D.4
某工厂接受了20天内生产1200台GH型电子产品的总任务. 已知每台GH型产品由4个G型装置和3个H型装置配套组成. 工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.
(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?
(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G 型装置的加工,且每人每天只能加工4个G型装置. 请问至少需要补充多少名新工人?
如图,已知菱形ABCD的对角线AC、BD的长分别是6cm、8cm,AE⊥BC,垂足为点E,则AE的长是( )
A. cm B.2cm C. cm D.cm
-3的绝对值是( )
A. 3 B. -3 C. D. -
计算:
(1)(π-3)0+2sin45°-()-1
(2)先化简,然后找一个你喜欢的x的值代入求值.
因式分解:a3+2a2+a= .
如图,平行四边形ABCD的对角线AC、BD交于点O,AC⊥AB,AB=2,且AC︰BD=2︰3.
(1)求AC的长;
(2)求△AOD的面积.
如图,AD⊥BC于点D,GC⊥BC于点C,CF⊥AB于点F,下列关于高的说法中错误的是( )
A.△ABC中,AD是BC边上的高
B.△GBC中,CF是BG边上的高
C.△ABC中,GC是BC边上的高
D.△GBC中,GC是BC边上的高