题目内容
如图,在△ABC中,AB>AC,∠AEF=∠AFE,EF与BC的延长线交于点G,试说明:∠G= (∠ACB-∠B).
如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:
(1)经过多少时间,△AMN的面积等于矩形ABCD面积的九分之一?
(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.
如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D为边CB上的一个动点(点D不与点B重合),过D作DO⊥AB,垂足为O,点B′在边AB上,且与点B关于直线DO对称,连接DB′,AD.
(1)求证:△DOB∽△ACB;
(2)若AD平分∠CAB,求线段BD的长;
(3)当△AB′D为等腰三角形时,求线段BD的长.
如图所示,在△ABC中,分别延长△ABC的边AB,AC到D,E,∠CBD与∠BCE的平分线相交于点P,爱动脑筋的小明在写作业时发现如下规律:
①若∠A=50°,则∠P=65°=90°- ;
②若∠A=90°,则∠P=45°=90°- ;
③若∠A=100°,则∠P=40°=90°- .
(1)根据上述规律,若∠A=150°,则∠P=________;
(2)请你用数学表达式写出∠P与∠A的关系;
(3)请说明(2)中结论的正确性.
已知等腰三角形的两边长a、b满足|a﹣4|+(b﹣9)2=0,求这个等腰三角形的周长.
阅读理【解析】如图①,在四边形ABCD的边AB上任取一点E(点E不与A、B重合),分别连接ED、EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的“相似点”;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的“强相似点”.解决问题:
(1)如图①,∠A=∠B=∠DEC=45°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;
(2)如图②,在矩形ABCD中,A、B、C、D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图②中画出矩形ABCD的边AB上的强相似点;
(3)如图③,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处,若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB与BC的数量关系.
如图,将长为8cm的铁丝首尾相接围成半径为2cm的扇形.则S扇形=_____cm2.
二次函数y=﹣2(x﹣1)2+3的图象的顶点坐标是( )
A. (1,3) B. (﹣1,3) C. (1,﹣3) D. (﹣1,﹣3)
如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是( )
A. B. C. D.